skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Atiyehsadat Panahi, Ehsan Kabir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. “Active structures” are physical structures that incorporate real-time monitoring and control. Examples includeactive vibration damping or blast mitigation systems. Evaluating physics-based models in real-time is generally not feasible for such systems having high-rate dynamics which require microsecond response times, but data-driven machine-learning-based models can potentially offer a solution. This paper compares the cost and performance of two FPGA-based implementations of real-time, continuously-trained models for forecasting timeseries signals with non-stationarities, with one using HighLevel Synthesis (HLS) and the other a programmable overlay architecture. The proposed model accepts a uni-variate vibration signal and seeks to forecast future samples to inform highrate controllers. The proposed forecasting method performs two concurrent neural inference operations. One inference forecasts the state of the signal f samples into the future as a function of the most recent h samples, while the other forecasts the current sample given h samples starting from h + f − 1 samples into the past. The first forecast produces the forecast while the second forecast allows the system to calculate the model’s loss and perform an immediate model update before the next sample period. 
    more » « less